

comparison of (2) and (3) shows that results for vertically polarized waves are obtained from (5)–(7) on multiplying the right-hand sides by  $(2C^2 - 1)$ .

R. BURMAN

Dept. of Physics  
Victoria University of Wellington  
Wellington, New Zealand

#### REFERENCES

- [1] T. Tamir, H. C. Wang, and A. A. Oliner, "Wave propagation in sinusoidally stratified dielectric media," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-12, pp. 323–335, May 1964; also, vol. MTT-13, p. 141, January 1965.
- [2] R. A. Kallas, T. Tamir, H. C. Wang, and A. A. Oliner, "Comment on 'wave propagation in sinusoidally stratified dielectric media,'" *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-13, pp. 139–141, January 1965.
- [3] C. Yeh, K. F. Casey, and Z. A. Kaprielian, "Transverse magnetic wave propagation in sinusoidally stratified dielectric media," *IEEE Trans. on Microwave Theory and Techniques*, vol. MTT-13, pp. 297–302, May 1965.
- [4] K. F. Casey, "A note on wave propagation in periodic media," *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-13, pp. 710–711, September 1965.
- [5] R. A. Kallas, "Additional comment on wave propagation in sinusoidally stratified dielectric media," *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-13, p. 715, September 1965.
- [6] K. F. Casey, C. Yeh and Z. A. Kaprielian, "Čerenkov radiation in inhomogeneous periodic media," *Phys. Rev.*, vol. 140, pp. B768–B775, November 8, 1965.
- [7] J. Heading, "Composition of reflection and transmission formulae," *J. Research NBS (Radio Prop.)*, vol. 67D, pp. 65–77, January–February 1963.

power division in the junction without tuning sleeve and ferrite was measured and found to be  $-4.8$  dB (port 1–2) and  $-4.6$  dB (port 1–3) for a center hole diameter of 0.024 inch. Theoretically a reflection coefficient of 0.45 was estimated from data taken at lower frequencies.<sup>4</sup>

Inserting the tight fitting copper sleeve with the ferrite into the junction, we experimentally determined the condition under which good circulator operation occurred. The variables are: a) the diameter of the ferrite rod and copper sleeve, b) the length the copper sleeve protrudes in the junction  $L_1$ , c) the length the ferrite rod protrudes from the copper sleeve  $L_2$ , and d) the total length of the ferrite. The results are given in Table I.

<sup>4</sup> N. Marcuvitz, *Waveguide Handbook*. New York: McGraw-Hill, 1951, p. 363.

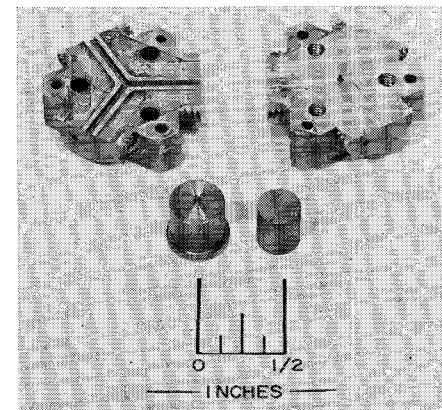



Fig. 1. Photograph of machined circulator. Copper cylinder with tuning sleeve holding ferrite magnet and the alnico magnet are shown in front.

TABLE I

| Circulator number | Copper sleeve         |                                | Ferrite (Trans Tech TT2-111) |                                |                           | Bias field |
|-------------------|-----------------------|--------------------------------|------------------------------|--------------------------------|---------------------------|------------|
|                   | Outer diameter (inch) | Protruding length $L_1$ (inch) | Diameter (inch)              | Protruding length $L_2$ (inch) | Ferrite rod length (inch) |            |
| 1                 | 0.024                 | 0.004                          | 0.019                        | 0.0068                         | 0.085                     |            |
| 2                 | 0.024                 | 0.002                          | 0.010                        | 0.0138                         | 0.065                     |            |
| 3                 | 0.020                 | 0.006                          | 0.010                        | 0.0140                         | 0.065                     | 300–500 G  |

#### Y-Junction Circulator at 258 GHz

We have developed a three-port circulator at 258 GHz as part of an amplifier operating on the principle of resonance saturation of a dipolar gas.<sup>1</sup>

The circulator consists of a symmetric Y-junction with an accurately centered ferrite post. The groove dimension corresponds to RG137 rectangular waveguide (0.043 inch by 0.0215 inch). This geometry was found to have at the given frequency the least loss. The design is similar to circulators obtained by Thaxter and Heller<sup>2</sup> at 140 GHz.

Constructional features are a split-machined structure, optical polished and gold plated surfaces, and integrated flanges. Figure 1 shows the waveguide grooves milled in a tellurium copper block which mates with a flat counterpiece. The flat section has a center hole for a copper sleeve containing the ferrite post.

First with all three arms matched<sup>3</sup> the

Manuscript received August 1, 1966; revised August 24, 1966. This work was performed under AF Contract 30(602)-3847, Rome Air Development Center, Air Force Systems Command, Griffiss AFB, Rome, N. Y.

<sup>1</sup> B. Senitzky and H. Liebe, "Amplification of 1.2 mm radiation by a two-level quantum system," *Appl. Phys. Letters*, vol. 8, pp. 252–254, May 1966.

<sup>2</sup> J. B. Thaxter and G. S. Heller, "Circulators at 70 and 140 kMc," *Proc. IRE (Correspondence)*, vol. 48, pp. 110–111, January 1960.

<sup>3</sup> As loads two F-band bolometers with F-H-band tapers were used. Both were adjusted to minimum reflection with an H-band directional coupler (all models are from TRG).

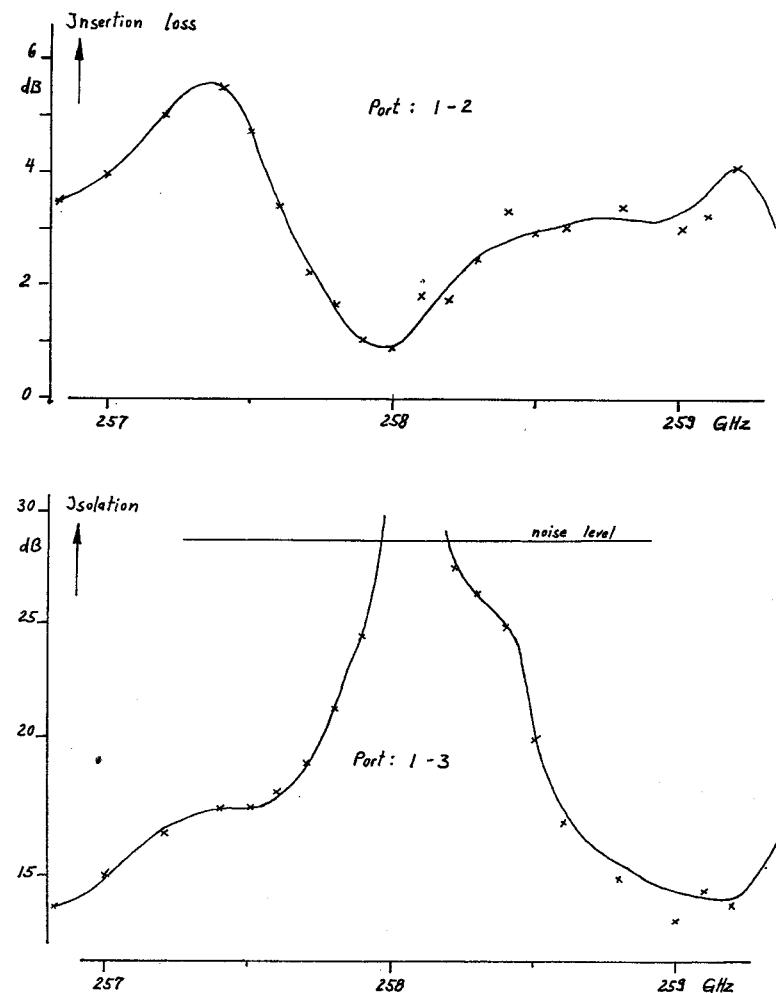



Fig. 2. Frequency characteristic of 258-GHz circulator.

Our final measurements showed typical insertion loss and isolation characteristics as given in Fig. 2. At 258.2 GHz<sup>1</sup> we measured for circulator no. 1:

| Port | 500 G  | Bias Field<br>500 G<br>(opposite circulation) | 0 G    |
|------|--------|-----------------------------------------------|--------|
| 1-2  | 1.8 dB | 21 dB                                         | 8.2 dB |
| 1-3  | 27 dB  | 2.0 dB                                        | 8.0 dB |
| 2-3  | 2.1 dB | 27 dB                                         | 8.0 dB |
| 2-1  | 21 dB  | 2.3 dB                                        | 7.4 dB |
| 3-1  | 1.5 dB | 17 dB                                         | 6.6 dB |
| 3-2  | 24 dB  | 2.5 dB                                        | 8.0 dB |

The lack of good loads<sup>2</sup> and VSWR measuring equipment prevented high accuracy ( $\pm 0.2$  dB) of the measurements. The mm wave power was generated by a second harmonic generator (point-contact silicon diode) driven by a VARIAN VC714 klystron.

#### ACKNOWLEDGMENT

The authors would like to acknowledge many helpful discussions with O. Giddings, and the technical assistance of T. Mehrhof and G. Parsons.

H. J. LIEBE<sup>5</sup>  
B. SENITZKY<sup>6</sup>

TRG

a Division of Control Data Corp.  
Melville, N. Y.

<sup>5</sup> Presently with NBS/ESSA-4402.09, Boulder, Colo.

<sup>6</sup> Presently with Electrophysics Department, Brooklyn Polytechnic Inst., Farmingdale, L. I., N. Y.

Baskakow assumes that, in the metallic waveguide, a field of the  $H_{11}$ -type is propagating in the positive  $z$ -direction, and calculates the launching efficiency for the dominant beam mode of the beam waveguide. If the lens diameter is sufficiently large, the field of this mode in the plane  $z=0$  is linearly polarized, has a Gaussian amplitude distribution, and a plane phase front. The launching efficiency which is defined by the power ratio of the dominant beam mode and the  $H_{11}$ -mode depends on the quantity  $R_0/\rho_0$  where  $R_0$  is the radius of the metallic waveguide, and  $\rho_0$  is the mode parameter of the beam waveguide, i.e., the radius at which the energy density in the dominant beam modes has decreased by a factor  $e$ . For  $R_0/\rho_0=1.84$  the launching efficiency reaches an optimum value of 86.7 percent.<sup>2</sup>

If in the tubular waveguide an  $E_{11}$ -mode of appropriate phase and amplitude is superimposed to the  $H_{11}$ -mode, the cross-sectional field distribution in the aperture of the waveguide will closely approximate the Gaussian field distribution of the dominant beam mode in the plane  $z=0$ . This has been demonstrated by Chaffin and Beyer<sup>3</sup> who used a dual mode ( $H_{11}+E_{11}$ ) horn with a phase correcting lens at the aperture.

In the following it will be shown that such dual mode excitation leads to theoretical launching efficiencies for the dominant beam mode of up to 98.3 percent.

If an  $H_{11}$ -mode of amplitude  $A$  and an  $E_{11}$ -mode of amplitude  $B$  is propagating in the tubular guide whose radius is so large that the phase velocity of the modes approaches the free space velocity, the distribution of the tangential field components in the plane  $z=0$  is

$$a_{11} = 3.8317 \quad \bar{a}_{11} = 1.8412. \quad (2)$$

On the metallic screen outside the waveguide aperture  $E_p$  and  $E_\phi$  are zero.

$$E_p^{(1)} = E_\phi^{(1)} = 0 \quad R_0 \leq \rho < \infty, z = 0. \quad (3)$$

If the lenses are sufficiently large, i. e., if

$$\sqrt{\frac{k}{2z_0}} R > 2.5$$

the dominant beam mode in the plane  $z=0$  has a Gaussian field distribution<sup>4</sup>

$$E_p^{(2)} = +e^{-1/2(\rho/\rho_0)^2} \cos \phi = \sqrt{\frac{\mu}{\epsilon}} H_\phi^{(2)}$$

$$E_\phi^{(2)} = -e^{-1/2(\rho/\rho_0)^2} \sin \phi = -\sqrt{\frac{\mu}{\epsilon}} H_p^{(2)} \quad 0 \leq \rho < \infty \quad (4)$$

where  $\rho_0$  is the mode parameter which is determined by the focal length  $f$  and the spacing  $2z_0$  of the lenses

$$\rho_0^2 = 2 \frac{z_0}{k} \sqrt{2 \frac{f}{z_0} - 1}. \quad (5)$$

Since the field distribution (4) of the dominant beam mode is a real function, maximum launching efficiency is obtained, if the  $H_{11}$ -mode and the  $E_{11}$ -mode have the same phase in the plane  $z=0$ , in other words if the amplitude factors  $A$  and  $B$  are both real. As the beam modes of the beam waveguide are mutually orthogonal, the amplitude  $C$  of the dominant beam mode is given by

$$C = \frac{\int_0^{2\pi} \int_0^{R_0} (E_p^{(1)} E_p^{(2)} + E_\phi^{(1)} E_\phi^{(2)}) \rho d\rho d\phi}{\int_0^{2\pi} \int_0^{\infty} (E_p^{(2)} + E_\phi^{(2)}) \rho d\rho d\phi}. \quad (6)$$

$$E_p^{(1)} \approx + \left\{ A \bar{\gamma} \frac{J_1(\bar{\gamma}\rho)}{\bar{\gamma}\rho} + B \gamma J_1'(\gamma\rho) \right\}$$

$$\cdot \cos \phi \approx \sqrt{\frac{\mu}{\epsilon}} H_\phi^{(1)} \quad 0 \leq \rho \leq R \quad (1)$$

$$E_\phi^{(1)} \approx - \left\{ A \bar{\gamma} J_1'(\bar{\gamma}\rho) + B \gamma \frac{J_1(\gamma\rho)}{\gamma\rho} \right\}$$

$$\cdot \sin \phi \approx - \sqrt{\frac{\mu}{\epsilon}} H_p^{(1)}$$

where  $\rho$  and  $\phi$  are polar coordinates, and  $\gamma R_0 = a_{11}$ ,  $\bar{\gamma} R_0 = \bar{a}_{11}$  are the first zeros of the Bessel function  $J_{11}(x)$  and its derivative  $J_{11}'(x)$ , respectively:

With (1) and (4) this expression can be re-written as follows

$$C = \frac{A}{\rho_0} \cdot F \left( \bar{a}_{11}, \frac{R_0}{\rho_0} \right) + \frac{B}{\rho_0} \cdot F \left( a_{11}, \frac{R_0}{\rho_0} \right) \quad (7)$$

where

$$F \left( a, \frac{R_0}{\rho_0} \right) = a \cdot \frac{R_0}{\rho_0} \int_0^1 e^{-1/2(R_0/\rho_0)^2 u^2} J_0(au) u du. \quad (8)$$

The launching efficiency of the dominant beam mode, i.e., the ratio between the power transmitted in this beam mode and the power transmitted in the metallic waveguide is

$$\eta = C^2 \cdot \frac{\int_0^{2\pi} \int_0^{\infty} (E_p^{(2)} H_\phi^{(2)} + E_\phi^{(2)} H_p^{(2)}) \rho d\rho d\phi}{\int_0^{2\pi} \int_0^{R_0} (E_p^{(1)} H_\phi^{(1)} + E_\phi^{(1)} H_p^{(1)}) \rho d\rho d\phi}. \quad (9)$$

<sup>2</sup> A graph, given in Baskakow's paper, shows an optimum launching efficiency of about 43 percent; apparently this graph is erroneous by a factor 2.

<sup>3</sup> R. J. Chaffin and F. J. Beyer, "A low-loss launcher for the beam waveguide," *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol. MTT-12, p. 555, September 1964.

<sup>4</sup> G. Goubau and F. Schwering, "On the guided propagation of electromagnetic wave beams," *IEEE Trans. on Antennas and Propagation*, vol. AP-9, pp. 248-256, May 1961.

#### Beam Waveguide Excitation by the Aperture Field of a Tubular Waveguide

**Abstract**—The excitation of a lens-type beam waveguide by the aperture field of a conventional waveguide of circular cross section is treated, assuming that a superposition of an  $H_{11}$ -mode and a  $E_{11}$ -mode is propagating in the metallic waveguide. The launching efficiency for the dominant beam mode depends on the amplitude ratio of the  $H_{11}$ - and  $E_{11}$ -modes and on the ratio of the beam mode parameter to the radius of the tubular waveguide. If both quantities are chosen appropriately a theoretical launching efficiency of 98.3 percent can be achieved.

#### DISCUSSION

The excitation of a lens-type beam waveguide by a conventional metallic waveguide was first studied by Baskakow.<sup>1</sup> He considers the structure shown in Fig. 1. A metallic waveguide of circular cross section terminates in the plane  $z=0$ ; outside the waveguide aperture this plane is assumed to be covered by a perfectly conducting screen. The plane  $z=0$ , simultaneously, is the input plane of a beam waveguide with circular lenses. The distance  $z_0$  of the first lens from the plane  $z=0$  is half the spacing of the lenses.

Manuscript received August 23, 1966.

<sup>1</sup> S. I. Baskakow, "Excitation of a beam waveguide," *Radio Engng. Electronic Phys.*, vol. 9, pp. 492-499, April 1964.